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Abstract

These notes give a short introduction to Ore extensions, polynomial
maps and pseudo-linear transformations. They are based on talks given
in King Abdulaziz University, Jeddah. They were written during a very
pleasant stay in the MECAA center in March 2011.

INTRODUCTION

Since their formal introduction in the 1930’s by Oystein Ore, skew polynomial
rings and their iterated constructions have been the subject of many studies. It
quickly appeared that their ”manageable” noncommutativity offers a very good
tool for constructing counter-examples. For instance:

(1) They were used by Bergman to produce a left but not right primitive ring.

(2) They enable Cohn and Schofield to construct division rings having different
left and right dimension over some subdivision ring.

After their introduction by Ore, the structure theory of skew polynomial rings
was further developed by N. Jacobson, S.A. Amitsur, P.M. Cohn, G. Cauchon,
T.Y.Lam, A. Leroy, J. Matczuk and many many others. Ore extensions are also
an essential tool in the theory of quantum groups. Many quantum groups can be
presented using iterated Ore extensions. In this case one powerful tool is what is
called the ”erasing of derivations” process due to G. Cauchon. (Cf. [Ca]).

Ore extensions have both a ”ring theoretical aspect”: characterization of sim-
plicity, description of prime ideals, passage of properties from the base ring to the
skew polynomial rings (often with the aim of giving examples of a non left/right
symmetryc behaviour) and a more ”arithmetical aspect” mainly related to the
factorization of polynomials, computation of the roots and also in relation with
special matrices, in particular Vandermonde and Wronskian matrices. The link
between these two aspects is given, in particular, by special types of polynomial
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(invariant, semmi-invariant, cv, irreducible, Wedderburn, fully reducible,...). An-
other important feature of the Ore extensions is their relation with differential
equation and operator theory. This was the origin of their study even before their
formal definition given by Ore.

1 Skew polynomial rings

Let us try to construct a noncommutative polynomial ring with ”reasonable” be-
haviour. LetA be a ring with unity 1. As for commutative polynomial rings we try
to give the left A-module S := A⊕N a structure of ring. Let a = (a0, . . . , an, 0, . . . ),
b = (b0, . . . , bl, 0, . . . , 0, . . . ) ∈ S. We need to define the product ab. We put:
e0 = (1, 0, 0 . . . , 0 . . . ), e1 := (0, 1, 0 . . . , 0 . . . ), e2 := (0, 0, 1, 0 . . . , 0 . . . ), . . . . So
any element of S is a finite sum

∑
aiei where ai ∈ A. We require that

a) eiej = ei+j (for i, j ∈ N).

b) e1(re0) ∈ Ae0 ⊕ Ae1, for any r ∈ A.

Since ei = ei1, we can write ab =
∑

i,j aieibjej =
∑

i,j aie
i
1bjej. Hence to define

a multiplication on S respecting the left A-module structure of S and satisfying
our constraint a) we must define e1b since we have e1b = e1

∑
bjej = e1(bje0)ej,

we finally only need to define the product e1(re0). The constraint b) above gives
that there should exist maps σ, δ from A to A such that e1(re0) = δ(r)e0+σ(r)e1.
Since e1((r+s)e0) = e1(re0)+e1(se0) we get that σ, δ ∈ End(R,+). On the other
hand the associativity of the multiplication in S gives that δ(rs)e0 + σ(rs)e1 =
e1(rse0) = e1((re0)(se0)) = (e1(re0))(se0) = (δ(r)e0 + σ(r)e1)(se0) = δ(r)se0 +
σ(r)(e1(se0)) = (δ(r)s+σ(r)δ(s))e0+σ(r)σ(s)e1. This gives that, for any r, s ∈ A,
we have:σ(rs) = σ(r)σ(s) and δ(rs) = σ(r)δ(s) + δ(r)s. Let us now remark that
if we put t := e1, the elements of S are polynomials in t i.e. finite sums

∑
ait

i,
ai ∈ R and the product is defined by the relation tr = σ(r)t+ δ(r), for r ∈ A.

We can now formally introduce the following definitions:

Definitions 1.1. Let A be a ring with 1 and σ a ring endomorphism of A.

(a) An additive map δ ∈ End(A,+) is a σ-derivation if, for any a, b ∈ R, we
have :

δ(ab) = σ(a)δ(b) + δ(a)b.

(b) The elements of the skew polynomial ring R = A[t;σ, δ] are polynomials∑
ait

i. They are added as ordinary polynomials and the multiplication is
based on the commutation law

ta = σ(a)t+ δ(a) for a ∈ A.



Noncommutative polynomial maps 3

(c) The degree of a nonzero polynomial f = a0 + a1t + a2t
2 + . . . ant

n ∈ R is
defined to be deg(f) = max{i|ai ̸= 0} and we put, as usual, deg(0) = −∞.

The paragraph preceding the above definition introduces the σ-derivation in a
fairly natural way. Another way will be presented later while discussing pseudo-
linear transformations. Let us give a few standard examples:

Examples 1.2. (1) If σ = id. and δ = 0 we have A[t; σ, δ] = A[t], the usual
polynomial ring in a commuting variable. If only σ = id. but δ ̸= 0 we
denote A[t; id., δ] as A[t; δ] and speak of a polynomial ring of derivation
type. On the other hand if δ = 0 but σ ̸= id. we write A[t;σ, δ] as A[t;σ]
and refer to it as a polynomial ring of endomorphism type.

(2) C[t;σ, 0] where σ is the usual conjugation in the complex number. Notice
that since σ2 = id., we can check that t2 is a central polynomial.

(3) Let k be field, R = k[x][t; id.; d/dx]. This is the weyl algebra. Notice the
relation tx − xt = 1. If chark = 0 the Weyl algebra is a simple ring. In
contrast if chark = p > 0 then tp and xp are central elements.

(4) Let A := k[x] be the polynomial ring over a field k and σ the k- endo-
morphism of A defined by σ(x) = x2. Notice that the polynomial ring
S := A[t; σ] is a domain (since σ is injective and k[x] is a domain) but it
is not a right Ore domain indeed we have xS ∩ tS = 0. In particular, S
is not right noetherian. (consider the ascending chain xS ⊂ xS + txS ⊂
xS + txS + t2xS ⊂ . . . ). The problem remains even if we localize the base
ring, extend σ and consider T := k(x)[t;σ]. T is then a left principal left
Ore domain but is not right noetherian. Notice that this gives an easy
example of a ring with left uniform dimension equal to 1 but with infinite
right uniform dimension.

(5) For a ∈ A we define the inner σ-derivation induced by a (denoted da,σ) in
the following way: for r ∈ A, da(r) := ar − σ(r)a. Let us remark that
A[t;σ, da,σ] = A[t − a, σ] and similarly for an inner automorphism induced
by a ∈ U(A) denoted by Ia and defined by Ia(x) = xax−1 for x ∈ A:
A[t; Ia] = A[a−1t].

(6) Let 0 ̸= q ∈ k where k is a field and let Iq be the two- sided ideal of the free
algebra k{x, y} generated by the element yxqxy. We define the quantum
plane as the quotient-algebra kq[x, y] := k{x, y}/Iq. Alternatively this k-
algebra can be seen as k[x][t; σ] where σ is the k-endomorphism defined
by σ(x) = qx. It is easy to check that, for i, j > 0, y′jxi = qijxiyj. Let
us mention first of all that this algebra is noetherian (Cf. the properties
mentioned just after these examples). Arithmetic can be developed in this
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algebra resembling very much to the classical one. For instance we can
define the following

1. For n > 0 let us define (n)q = 1 + q + · · ·+ qn−1 = qn−1
q−1

.

2. For n > 0, (n)!q = (1)q(2)q . . . (n)q = (q−1)(q2−1)...(qn−1
(q−1)n

while (0)!q = 1

(of course (n)!q is called the q factorial of n).

3. For 0 ≤ k ≤ n we put
(
n
k

)
q
:= (n)!q

(k)!q(n−k)!q
.

Using these definitions we can now state the following:

a)
(
n
k

)
q
is a polynomial in q with integer coefficients.

b)
(
n
k

)
q
=

(
n

n−k

)
q
.

c)
(
n
k

)
q
=

(
n−1
k−1

)
q
+ qk

(
n−1
k

)
q
=

(
n−1
k

)
q
+ qn−k

(
n−1
k−1

)
q
.

d) If yx = qxy then (x+ y)n =
∑n

k=0

(
n
k

)
q
xkyn−k.

The quantum plane is a member of a huge family of algebras called the
quantum groups. A big number of these algebras can be built as iterated
Ore extensions.

(7) Let p be a prime number, n ∈ N and q = pn. Consider R = Fq a finite
field and θ the Frobenius automorphism. We can of course look at the
skew polynomial ring R[t; θ]. this kind of Ore extensions have been used
recenntly in the context of noncommutative codes.

The following proposition gives some of the most basic properties of an Ore
extension. The proofs of these statements can be found in many books (Cf. [Co],
[La])

Proposition 1.3. Let R = A[t; σ, δ] be a skew polynomial ring over a ring A.

(a) If A is a domain and σ is injective then R is a domain as well.

(b) If A = K is a division ring then R is a left principal ideal domain. Hence
it is a left Ore domain and admits a left division ring of quotients denoted
by K(t;σ, δ). R is also right noetherian (and then in fact right principal) if
and only if σ is an automorphism.

(c) If p(t) ∈ R is a monic polynomial then for any polynomial f(t) ∈ R there ex-
ists q(t), r(t) ∈ R such that f(t) = p(t)q(t)+r(t) and deg(r(t)) < deg(p(t)).

(d) If A is a division ring then R is a unique factorization domain i.e. every
element f of R can be expressed as a product of irreducible polynomials and
if f = p1 · · · pn = q1 · · · qm are two such decompositions then m = n and
there exists a permutation π ∈ Sn such that, for every 1 ≤ i ≤ n, there is
an isomorphism R/Rpi ∼= R/Rqπ(i).
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When the base ring A = K is a division ring, the study of the ideal structure of
the ring of polynomial rings is helped by the euclidean algorithm. Let us mention,
for example, the criterion for simplicity. We need the following definition:

Definitions 1.4. a) Let p(t) ∈ R = A[t;σ, δ], we say that p(t) is a right
semi-invariant polynomial if for every x ∈ A there exists y ∈ A such that
p(t)x = yp(t). If additionally p(t)t = (bt + a)p(t) for some a, b ∈ A then
we say that the polynomial p(t) is right invariant. We often will drop the
adjective right and speak about semi-invariant and invariant polynomials.

b) A σ-derivation δ of A is called quasi-algebraic if there exist an endomor-
phism θ of A and elements 0 ̸= an, an−1, an−2, . . . , a0, b ∈ A with n > 0,
such that

n∑
i=1

aiδ
i(x) + bδa0,θ(x) = 0 for all x ∈ A

When A = K is a division ring these polynomials were used to characterize
when the extension R = K[t;σ, δ] is simple. Let us sum up here a few of these
results: In particular, the following is proved in [LLLM]: let p(t) ∈ R be a
nonconstant monic semi-invariant polynomial of minimal degree. Then
(1) if σ is not an automorphism or if σ is an automorphism of infinite inner order,
p(t) is already invariant.
(2) call J = {h(t) ∈ R : h(t)·R ⊆ R ·p(t)} the ”bound” of R ·p(t) (it is the largest
2-sided ideal of R contained in R · p(t)). J is given by R · p(t)s for some integer
s ≤ deg(p(t)). If σ is not an inner automorphism, then p(t)s is an invariant
polynomial of minimal degree in R. If p(t) is not necessarily of minimal degree,
then: if σ(K) has finite right codimension m in K, J = R · f(t) where f(t) is
invariant of degree ≤ n(1 +m+ · · ·+mn−1) where n = deg(p(t)).

Let us point out explicitly that the above shows that R is not simple if and
only if there exists a nonconstant semi-invariant polynomial.

In the same paper (loc. cit.) these results are extended to the case when K
is a simple ring and S is an automorphism.
The next step is to consider the case of a prime ring A and the Ore exten-
sion R = A[t; σ, δ]. For studying this case it is necessary to extend the base
ring and consider the Martidale ring of quotients. Let us recall that Ql =
limI∈F Hom(AI,AA), where F is the filter of all nonzero two-sided ideals of A.
T is the subring of Ql, consisting of elements q ∈ Ql for which there exists a
non-zero two-sided ideal I of A such that ql ⊂ A. T can also be seen as the set
of elements q in the maximal quotient ring of A such that there exists a nonzero
two sided ideal I of A for which Iq ⊂ A and qI ⊂ A. Using these notations we
obtain (Cf. [LM]) the following basic proposition:

Proposition 1.5. For any non-zero ideal I of A[t;σ, δ] there exists a unique
monic invariant polynomial fI(t) ∈ T [t;σ, δ] having the following properties:
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(1) degf(t) = min{degf(t) | f(t) ∈ I \ 0} = n and every polynomial g(t) ∈ I
of degree n can be written in the form af(t) for some a ∈ A

(2) I ⊆ T [t; σ, δ]f(t).

Let us also mention that there is a strong link between the existence of some
specific polynomials and the ideal structure of the Ore extension (eventually after
some localization). In particular, CV polynomials, semi-invariant and invariant
polynomials when they exist give these links.

2 Polynomial maps and pseudo-linear transfor-

mations

We start this section with the ”obvious definition” of the polynomial map at-
tached to an element of an Ore extension:

Definition 2.1. For any f(t) ∈ R = A[t; σ, δ] and a ∈ A there exists a unique
polynomial q(t) and a unique element r ∈ A such that f(t) = q(t)(t − a) + r.
With these notations, the polynomial map associated to f(t) ∈ R is the map
f : A −→ A defined by f(a) := r.

For i ≥ 0, we denote Ni the polynomial map determined by ti.

Let us first give some examples.

Examples 2.2. 1. If σ = id. and δ = 0 we get back the standard way of
evaluating a polynomial. It should be noted though, that, since R is not
commutative, we have to specify that this is a right polynomial map. For
instance, although for c ∈ A f(t) = ct = tc ∈ R = A[t], the polynomial
map we consider here is the map f : A −→ A defined by f(a) = ca, for any
a ∈ A.

2. The polynomial map associated to t is always the identity (i.e. N1 = id.).
The polynomial map associated to a polynomial c0 ∈ A of degree zero is
always the constant map determined by c0.

3. If k is a field the number of roots of polynomial f(t) ∈ k[x] is bounded by
its degree deg(f(x)). This is not true if k is replaced by a ring even commu-
tative: consider for instance (x − 2)(x − 1) ∈ Z

4Z [x]. In a noncommutative
setting this can be badly wrong even over a division ring: the polynomial
t2+1 ∈ H[t] has infinitely many right roots given by all the conjugates of i.

4. A ring A is said to have the finite zero property if for any f(x) ∈ A[x], the
number of roots of f(x) in A is finite. (Cf. [F]).
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5. The number of roots of polynomials over matrix rings over the complex
numbers has been studied by Wilson and his students. For instance it is
proved (Cf. [S]) that if a polynomial p(t) ∈ M2(C)[t] of degree n has more
than

(
2
2n

)
then it has infinitely many roots.

6. A little care is needed while thinking about (right) roots. For instance, if
H stands for the skew field of quaternions over R, in H[t] the polynomial
f(t) := (t−j)(t−i) = t2−(i+j)t+ji is such that f(j) = j2−(i+j)j+ji =
2ji ̸= 0. This means that j is not a right root of f(t). In fact, i is the
only (right) root of (t− j)(t− i). This phenomenon will be explained and
generalized after the introduction of the so-called product formula

7. If δ = 0, it is easy to check that, for i > 0 the polynomial map associated to
f(t) = ti ∈ K[t;σ] is the ith-norm i.e. Ni(a) = σi−1(a) . . . σ(a)a, and hence
if f(t) =

∑n
i=0 cit

i ∈ K[t;σ], we have f(a) =
∑n

i=0 ciσ
i−1(a) . . . σ(a)a.

8. Let us denote ”−” the conjugation in the field of complex numbers C. The
polynomial t2 − i ∈ C[t;−] has no (right) root and hence it is irreducible.
This shows that there exist irreducible polynomials of degree 2 in C[t;−].
Of course, this contrasts sharply with the usual untwisted polynomial ring
C[t]. Later we will describe all the irreducible polynomials of C[t;−].

9. If σ = id. one can check that N2(a) = t2(a) = a2 + δ(a) and N3(a) =
a3 + 2δ(a)a + aδ(a) + δ2(a). Notice that if δ(a) commutes with a and
characteristic of K is 3 then N3(a) = a3 + δ2(a).

10. Let Fq denote the finite field with q = pn elements (p is prime). Consider θ
the Frobenius automorphism on Fq defined by θ(x) = xp for x ∈ Fq. As in
quantum theory let us write, for n ≥ 1, [n] for pn−1

p−1
and put [0] = 0. It is

then easy to check that, for f(t) :=
∑m

i=0 ait
i ∈ Fq[t; θ] and b ∈ Fq, one has

f(b) =
∑m

i=0 aib
[i].

We now introduce the notion of a pseudo-linear transformation. This notion
appears naturally while looking at modules over an Ore extensions and it will be
very useful in respect with polynomial maps.

Definition 2.3. Let A be a ring, σ an endomorphism of A and δ a σ-derivation
of A. Let also V stand for a left A-module.

An additive map T : V −→ V such that, for α ∈ A and v ∈ V ,

T (αv) = σ(α)T (v) + δ(α)v.

is called a (σ, δ) pseudo-linear transformation (or a (σ, δ)-PLT, for short).
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In case V is a finite dimensional vector space and σ is an automorphism, the
pseudo-linear transformations were introduced in [Ja2].

We will see that PLT’s are very useful tools why studying polynomial maps
over rings. Even over division rings they will not only explain some features of
the structure of roots of polynomial maps but also they seem required if we try to
define polynomial maps of several noncommutative variables (even over division
rings).

The (σ, δ)-PLT’s appear naturally in the context of modules over an Ore
extension A[t;σ, δ]. This is explained in the next proposition.

Proposition 2.4. Let A be a ring σ ∈ End(A) and δ a σ-derivation of A. For
an additive group (V,+) the following conditions are equivalent:

(i) V is a left R = A[t; σ, δ]-module;

(ii) V is a left A-module and there exists a (σ, δ) pseudo-linear transformation
T : V −→ V ;

(iii) There exists a ring homomorphism Λ : R −→ End(V,+).

Proof. The proofs are straightforward, let us nevertheless mention that, for the
implication (i) ⇒ (ii), the (σ, δ)-PLT on V is given by the left multiplication by
t.

The link just mentioned between pseudo-linear transformations and skew poly-
nomial rings helps the study of the structure of such rings. For instance they per-
mit (Cf. [L] ) to determine when R = K[t; σ, δ] (K a division ring,σ ∈ End(K), δ
a σ-derivation) is left or right primitive. Various statements can be shown to
be equivalent to left primitivity of R (cf. [L] ). One is that there exists a non-
algebraic (σ, δ) pseudo-linear transformation of a finite- dimensional left K-vector
space and another is that, for some n, there exists an n×n matrix A over K such
that f(A) ̸= 0 for all f ∈ R with fR = Rf . This leads to the equivalence of the
following statements:

1. R is left primitive.

2. R a right primitive.

3. R is simple or Sl is not an inner automorphism for any l > 0 or the poly-
nomial ring K[x] is primitive.

Let T be a (σ, δ)-PLT defined on an A-module V . Using the above notations,
we define, for f(t) =

∑n
i=0 ait

i ∈ R, and T a (σ, δ)-PLT f(T ) := Λ(f(t)) =∑n
i=0 aiT

i ∈ End(V,+). We can now state the following corollary. It will be
intensively used in these notes.
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Corollary 2.5. For any f, g ∈ R = A[t;σ, δ] and any pseudo-linear transforma-
tion T we have: (fg)(T ) = f(T )g(T ).

Examples 2.6. (1) If σ = id. and δ = 0, a pseudo-linear map is an endomor-
phism of left A-modules. If δ = 0, a pseudo-linear map is usually called a
(σ) semi-linear transformation.

(2) Let V be a free left A-module with basis β = {e1, . . . , en} and let T : V −→
V be a (σ, δ)-PLT. This gives rise to a (σ, δ)-PLT on the left A-module An

as follows: first define C = (cij) ∈ Mn(A) by T (ei) =
∑n

i cijej. and extend
component-wise σ and δ to the ring An. We then define a (σ, δ)-PLT on An

by TC(v) = σ(v)C + δ(v), for v ∈ An. In particular, for n = 1 and a ∈ A,
the map Ta : A −→ A given by Ta(x) = σ(x)a + δ(x) is a (σ, δ)-PLT. Ta
will be called the (σ, δ)-PLT induced by a ∈ A. Notice that T0 = δ and
T1 = σ + δ.

(3) It is well-known and easy to check that, extending σ and δ from a ring A
to Mn(A) component-wise, gives an endomorphism, still denoted σ, and a
σ-derivation also denoted δ on the ring Mn(A). For n, l ∈ N we may also
extend component-wise σ and δ to the additive group V := Mn×l(A). Let
us denote these maps by S and D respectively. Then S is a σ semi-linear
map and D is a (σ, δ)-PLT of the left Mn(A)-module V . This generalizes
the fact, mentioned in example (2) above, that δ itself is a pseudo-linear
transformation on A.

(4) Let AVB be an (A,B)-bimodule and suppose that σ and δ are an endomor-
phism and a σ-derivation on A, respectively. If S is a σ semi-linear map
and T is a (σ, δ) PLT on AV , then for any b ∈ B, the map Tb defined by
Tb(v) = S(v)b+ T (v), for v ∈ V , is a (σ, δ) pseudo-linear map on V .

(5) Using both Examples (3) and (4) above, we obtain a (σ, δ) pseudo-linear
transformation on the set of rectangular matrices V :=Mn×l(A) (considered
as an (Mn(A),Ml(A))-bimodule) by choosing a square matrix b ∈ Ml(A)
and putting Tb(v) = S(v)b +D(v) where S and D are defined component-
wise as in Example (3) and v ∈ V . This construction will be used in
Proposition 2.8.

Remarks 2.7. (1) Let us mention that the composition of pseudo-linear trans-
formations is usually not a pseudo-linear transformation. Indeed, let T :
V −→ V be a (σ, δ)-PLT. For a ∈ A, v ∈ V and n ≥ 0, we have
T n(av) =

∑n
i=0 f

n
i (a)T

i(v), where fn
i is the sum of all words in σ and δ

with i letters σ and n− i letters δ.
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(2) Let σ, τ be endomorphisms of a ring A. Let also γ be a map from A to A.
It is easy to see that the set

E(σ, γ, τ) := {
(
σ(r) γ(r)
0 τ(r)

)
| r ∈ A}

is a subring of the upper triangular matrix ring, UT2(A) if and only if
γ ∈ End(A,+) and satisfies γ(rs) = σ(r)γ(s) + γ(r)τ(s), for r, s ∈ A.
Such a map is called a (σ, τ)-derivation. If τ = id. we get back our usual
σ-derivation. We have seen that a σ-derivation, say δ, can be seen as a
special case of a pseudo-linear transformation. It is natural to expect that
the pseudo-linear transformations can also be presented using triangular
matrices as above. This is indeed the case, we will then obtain just as
above a small generalization of a (σ, δ)-PLT. Let V be a left A- module and
consider three maps φ1, φ2, φ3 from V to V . The subset

V (φ1, φ2, φ3) := {
(
φ1(v) φ2(v)
0 φ3(v)

)
| v ∈ V } ⊂ UT2(V ) :=

(
V V
0 V

)
is a left UT2(A)-module of UT2(V ) if and only if the maps φi, i = 1, 2, 3 are
A-linear maps. Now, if we look at UT2(V ) as a left E := E(σ, γ, τ)-module
then V (φ1, φ2, φ3) is a sub E-module of UT2(V ) if and only if φ1 and φ3

are respectively a σ and a τ -semi linear transformations on V , and φ2 is
an additive map that satisfies φ2(rv) = σ(r)φ2(v) + γ(r)φ3(v). If τ = id.A,
γ is a σ-derivation and if moreover φ3 = id.V then φ2 is a (σ, γ)- PLT. Of
course, we can also consider the case when σ = id.|R and φ1 = id.V .

Let us now indicate explicitly the link between polynomial maps and pseudo-
linear transformations. Since, for a ∈ A, the pseudo-linear transformation on A
associated to the left R-module V = R/R(t− a) is Ta (Cf. Example 2.6(2)). The
equality f(t).1V = f(a) +R(t− a) leads to

f(Ta)(1) = f(a).

For a left R-module V , we consider the standard (R,EndRV )-bimodule struc-
ture of V . In the proof of Theorem 2.4 we noticed that that T corresponds to the
left multiplication by t on V . This implies that, for any f(t) ∈ R, f(T ) is a right
EndR(V )-linear map defined on V . In particular, ker f(T ) is a right EndR(V )
submodule of V . Considering V = R/R(t − a) for a ∈ A, this module struc-
ture on ker(f(Ta)) explains and generalizes some important properties of roots
of polynomials obtained earlier (Cf. [LL1], [LL2], [LLO]), see Corollary 2.15 for
more details). Let us describe the elements of EndR(V ) in case V is a free left
A-module. We extend the maps σ and δ to matrices over A by letting them act
on every entry.



Noncommutative polynomial maps 11

Proposition 2.8. For i = 1, 2, let Ti be a (σ, δ)-PLT defined on a free A-module
Vi with basis βi and dimension ni. Suppose φ ∈ HomA(V1, V2) is an A-module
homomorphism. Let also B ∈ Mn1×n2(A), C1 ∈ Mn1×n1(A) and C2 ∈ Mn2×n2(A)
denote matrices representing φ, T1 and T2 respectively in the appropriate bases
β1 and β2. Let RV1 and RV2 be the left R-module structures induced by T1 and
T2, respectively. The following conditions are equivalent:

(i) φ ∈ HomR(V1, V2);

(ii) φT1 = T2φ;

(iii) C1B = σ(B)C2 + δ(B);

(iv) B ∈ ker(TC2 − LC1) where TC2 (resp. LC1) stands for the pseudo-linear
transformation (resp. the left multiplication) induced by C2 (resp. C1) on
Mn1×n2(A) considered as a left Mn1(A)-module.

Proof. (i) ⇔ (ii). This is clear since, for i = 1, 2, Ti corresponds to the left action
of t on Vi.
(ii) ⇔ (iii). Let us put β1 := {e1, . . . , en1}, β2 := {f1, . . . , fn2}, C1 = (c

(1)
ij ),

C2 = (c
(2)
ij ) and B = (bij). We then have, for any 1 ≤ i ≤ n1, T2(φ(ei)) =

T2(
∑

j bijfj) =
∑

j(σ(bij)T2(fj) + δ(bij)fj) =
∑

k(
∑

j σ(bij)c
(2)
jk + δ(bik))fk. Hence

the matrix associated to T2φ in the bases β1 and β2 is σ(B)C2+δ(B). This yields
the result.
(iii) ⇔ (iv). It is enough to remark that the definition of TC2 acting onMn1×n2(A)
shows that, for any B ∈Mn(A), (TC2 − LC1)(B) = σ(B)C2 + δ(B)− C1B.

Remark 2.9. The above proposition 2.8 shows that the equality (iii) is indepen-
dent of the bases. Hence, if P1 ∈ Mn1(A) and P2 ∈ Mn2(A) are invertible matri-
ces associated to change of bases in V1 and V2 then C ′

1B
′ = σ(B′)C ′

2 + δ(B′) for
B′ := P1BP

−1
2 , C ′

1 := σ(P1)C1P
−1
1 +δ(P1)P

−1
1 and C ′

2 := σ(P2)C2P
−1
2 +δ(P2)P

−1
2 .

Of course, this can also be checked directly.

Let p(t) =
∑n

i=0 ait
i be a monic polynomial of degree n and consider the

left R = A[t;σ, δ] module V := R/Rp. It is a free left A-module with basis
β := {1, t, . . . , tn−1}, where ti = ti + Rp for i = 1, . . . , n − 1. In the basis β, the
matrix corresponding to left multiplication by t is the usual companion matrix
of p denoted by C(p) and defined by

C(p) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1
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Corollary 2.10. Let p1, p2 ∈ R = A[t; σ, δ] be two monic polynomials of degree
n ≥ 1 with companion matrices C1, C2 ∈ Mn(A). R/Rp1 ∼= R/Rp2 if and only if
there exists an invertible matrix B such that C1B = σ(B)C2 + δ(B).

The pseudo-linear transformation induced on An by C(p) will be denoted Tp.
Recall that Rp is a two sided ideal in its ideal ring Idl(Rp)) = {g ∈ R | pg ∈

Rp}. The quotient ring Idl(Rp
Rp

is called the eigenring of Rp and is isomorphic to

EndR(R/Rp). The (R,EndR(R/Rp))-bimodule structure of R/Rp gives rise to
a natural (R,EndR(R/Rp))-bimodule structure on An. For future reference we
sum up some information in the form of a corollary.

Corollary 2.11. Let p(t) ∈ R be a monic polynomial of degree n and denote
C = C(p) its companion matrix. We have:

(a) The eigenring EndR(R/Rp) is isomorphic to Cσ,δ
p := {B ∈ Mn(A) |CB =

σ(B)C + δ(B}.

(b) An has an (R,Cσ,δ
p )-module structure.

(c) For f(t) ∈ R, f(Tp) is a right Cσ,δ
p -morphism. In particular, ker f(Tp) is a

right Cσ,δ
p -submodule of An.

We need to fix some notations. Thinking of the evaluation f(a) of a poly-
nomial f(t) ∈ R = A[t;σ, δ] at a ∈ A as an element of A representing f(t) in
R/R(t− a), we introduce the following notation: for a polynomial f(t) ∈ R and
a monic polynomial p(t) ∈ R of degree n, f(p) stands for the unique element in
R of degree < deg(p) = n representing f(t) in R/Rp(t). Since divisions on the
right by the monic polynomial p can be performed in R, f(p) is the remainder of
the right division of f(t) by p(t). We write f(p) for the image of f(p) in R/Rp.
For v ∈ V = R/RP , we denote vβ ∈ An the row of coordinates of v in the
basis β := {1, t, . . . , tn−1}. Using the above notations we can state the following
theorem.

Theorem 2.12. Let p(t) ∈ R = A[t;σ, δ] be a monic polynomial of degree n ≥ 1.
Then:

(1) For f(t) ∈ R we have: f(p)β = f(Tp)(1, 0, . . . , 0).

(2) For f(t), g(t) ∈ R, we have: (fg)(p)β = f(Tp)(g(p)β).

(3) For f(t) ∈ R there exist bijections between the following sets ker f(Tp),
{g ∈ R | deg(g) < n and fg ∈ Rp} and HomR(R/Rf,R/Rp).

(4) Idl(Rp) = {g ∈ R | g(Tp)(1, 0, . . . , 0) ∈ ker p(Tp)}.
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Proof. (1) Let us denote t. the (σ, δ)-PLT on R/Rp defined by left multipli-
cation by t. Since f(t). = f(t.), we get f(p)β = (f(t).1)β = (f(t.)(1))β =
f(Tp)(1, 0, . . . , 0).

(2) The point (1) above and corollary 2.5 give (fg)(p)β = (fg)(Tp)(1, 0, . . . , 0) =

f(Tp)(g(Tp)(1, 0, . . . , 0)) = f(Tp)(g(p)β).

(3) The map ψ : ker f(Tp) −→ R defined by ψ((v0, . . . , vn−1)) =
∑n−1

i=0 vit
i is injec-

tive and, using (2) above with g(t) :=
∑n−1

i=0 vit
i, we obtain 0 = f(Tp)(v0, . . . , vn−1) =

f(Tp)(g(p)β) = fg(p)β. this means that fg ∈ Rp. The map ψ is the required first
bijection of statement (3).
Now, if g ∈ R is such that deg(g) < n and fg ∈ Rp then the map φg : R/Rf −→
R/Rp defined by φg(h + Rf) = hg + Rp is an element of HomR(R/f,R/Rp).
The map γ : {g ∈ R | deg(g) < n, fg ∈ Rp} −→ HomR(R/Rf,R/Rp) defined by
γ(g) = φg is easily seen to be bijective.

(4) Let us remark that g ∈ R is such that pg ∈ Rp iff (pg)(p)β = 0 iff p(Tp)(g(p)β) =
0. The first statement (1) above gives the required conclusion.

The next corollary requires a small lemma which is interesting by itself. For
a free left A-module V with basis β = {e1, . . . , en} and φ ∈ End(V,+) we write
φ(ei) =

∑
j φijej and denote φβ ∈Mn(A) the matrix defined by φβ = (φij).

Lemma 2.13. Let T be a pseudo-linear transformation defined on a free left A-
module V with basis β = {e1, . . . , en} and f(t) ∈ R = A[t;σ, δ]. Considering f(t)
as an element of Mn(A)[t;σ, δ], we have f(T )β = f(Tβ).

Proof. (Cf. [L] Lemma 3.3).

The following corollary is an easy generalization of the classical fact that the
companion matrix, C := C(p) ∈ Mn(A), of a monic polynomial p of degree
n annihilates the polynomial itself. As earlier, we extend σ and δ to Mn(A)
component-wise.

Corollary 2.14. Let p(t) ∈ R = A[t; σ, δ] ⊂Mn(A)[t;σ, δ] be a monic polynomial
of degree n > 1. Then the following assertions are equivalent:

(i) t ∈ Idl(Rp);

(ii) for any f ∈ R, f ∈ Rp if and only if f(C(p)) = 0;

(iii) p(C(p)) = 0.

Proof. (i) ⇒ (ii) Since t ∈ Idl(Rp), f ∈ Rp implies fti ∈ Rpti ⊂ Rp, for any
0 ≤ i ≤ n− 1. Theorem 2.12(4) then gives ((f(t)ti)(Tp)(1, 0, . . . , 0) = (0, . . . , 0).
Hence, f(Tp)(T

i
p(1, 0, . . . , 0)) = (0, . . . , 0), for i ∈ {0, . . . , n − 1}. This leads to

f((Tp))β = 0, where β is the standard basis of An. The above lemma 2 shows
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that 0 = f((Tp))β = f((Tp)β) = f(C), where f(C) stands for the evaluation of
f(t) ∈Mn(A)[t;σ, δ] at C.
(ii) ⇒ (iii) This is clear.
(iii) ⇒ (i) This is obtained by retracing the steps in (i) ⇒ (ii) in the special case
when f(t) = p(t).

Let us sum up all the information that we have gathered in the special case
when V = R/R(t− a). When, moreover, A = K is a division ring, these results
were proved in earlier papers (Cf. [LL1], [LL2], [LLO]) using different, more
computational proofs. U(A) stands for the set of invertible elements of A. For
x ∈ U(A), we denote ax the element σ(x)ax−1 + δ(x)x−1 and ∆σ,δ(a) := {ax |x ∈
U(A)}.

Corollary 2.15. Suppose a ∈ A and f, g ∈ R = A[t; σ, δ]. Let V stand for the
R-module R/R(t− a). Then:

(a) The map Λa : R −→ End(V,+) defined by Λa(f) = f(Ta) is a ring homo-
morphism. For f, g ∈ R, we have (fg)(a) = f(Ta)(g(a)).

(b) Suppose g(a) is invertible, then: fg(a) = f(ag(a))g(a). In particular, for an
invertible element x ∈ A we have: f(Ta)(x) = f(ax)x.

(c) The set Cσ,δ(a) := {b ∈ A | ab = σ(b)a + δ(b)} is a ring isomorphic to
EndRV .

(d) If A is a division ring, then so is Cσ,δ(a). In this case, for any f(t) ∈ R
and any a ∈ A, ker(f(Ta)) = {x ∈ A \ {0} | f(ax) = 0} ∪ {0} is a right
Cσ,δ(a)-vector space.

Proof. (a) This is a special case of Corollary 2.5 and Theorem 2.12(2).
(b) It is easy to check that, for x ∈ U(A), (t− ax)x = σ(x)(t− a). This leads to
f(t)x−f(ax)x = (f(t)−f(ax))x ∈ R(t−ax)x ⊆ R(t−a). Hence, using (a) above
with g(t) = x, we have f(ax)x = (f(t)x)(a) = f(Ta)(x). The other equality is
now easy to check.
(c) This comes directly from Proposition 2.8.
(d) If A is a division ring, R(t−a) is a maximal left ideal of R and Schur’s lemma
shows that EndR(R/R(t− a)) is a division ring. The other statements are clear
from our earlier results.

Remark 2.16. In a division ring K, a (σ, δ)-conjugacy class ∆σ,δ(a) can be seen
as a projective space associated to K considered as a right Cσ,δ(a)-vector space.
With this point of view, for f(t) ∈ R = K[t; σ, δ] without roots in ∆σ,δ(a), the
projective map associated to the right Cσ,δ(a)-linear map f(Ta) is the map ϕf

defined by ϕf (a
x) = (ax)f(a

x) = af(Ta(x)). This map ϕf is useful to detect pseudo-
roots of a polynomial (i.e. elements a ∈ K such that t − a divides gf ∈ R but
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f(a) ̸= 0). This point of view shed some lights on earlier results on ϕ-transform
(Cf. [LL3]).

Examples 2.17. 1. If b − a ∈ A is invertible, it is easy to check that the
polynomial f(t) := (t− bb−a)(t− a) ∈ R = A[t;σ, δ] is a monic polynomial
right divisible by t−a and t− b. f(t) is thus the least left common multiple
(abbreviated LLCM in the sequel) of t− a and t− b in R = A[t; σ, δ]. Pur-
suing this theme further leads, in particular, to noncommutative symmetric
functions (Cf. [DL]).

2. Similarly one easily checks that, if f(a) is invertible then the LLCM of f(t)
and t− a in R = A[t;σ, δ] is given by (t− af(a))f(t).

3. It is now easy to construct polynomials that factor completely in linear
terms but have only one (right) root. Let K be a division ring and a ∈
K be an element algebraic of degree two over the center C of K. We
denote fa(t) ∈ C[t] the minimal polynomial of a. fa(t) is also the minimal
polynomial of the algebraic conjugacy class ∆(a) := {xax−1 |x ∈ K \ {0}}.
For γ ∈ ∆(a), we note γ the unique element of K such that fa(t) = (t −
γ)(t − γ). Let us remark that if γ ̸= a then γ = aa−γ. Using an induction
on m, the reader can easily prove that if a polynomial g(t) is such that
g(t) := (t − am)(t − am−1) . . . (t − a1) where ai ∈ ∆(a) but ai+1 ̸= ai, for
i = 1, . . . ,m− 1 then a1 is the unique root of g(t). For a concrete example
consider H, the division ring of quaternions over Q. In this case, for a ∈ H,
a is the usual conjugate of a. Of course, one can generalize this example to
a (σ, δ)-setting by considering an algebraic conjugacy class of rank 2.

4. Let us describe all the irreducible polynomials of R := C[t;−]. First notice
that the left (and right) Ore quotient ring C(t;−) of R is a division ring of
dimension 4 over its center R(t2). This implies that any f(t) ∈ C[t;−]\R[t2]
satisfies an equation of the form: f(t)2 + a1(t

2)f(t) + a0(t
2) = 0 for some

a1(t
2), a0(t

2) ∈ R(t2) with a0(t2) ̸= 0. This shows that for any polynomial
f(t) ∈ C[t;−] \ R[t] there exists g(t) ∈ C[t;−] such that g(t)f(t) ∈ R[t2] ⊂
R[t] ⊂ C[t;−]. In particular, the irreducible factors of g(t)f(t) in C[t;−] are
of degree ≤ 2. We can now conclude that the monic irreducible non linear
polynomials of C[t;−] are the polynomials of the form t2 + at + b with no
(right) roots. In other words the monic irreducible non linear polynomials
of C[t;−] are of the form t2+at+ b such that for any c ∈ C, cc+ac+ b ̸= 0.

We now collect a few more observations.

Proposition 2.18. Let f, g ∈ R = A[t; σ, δ] be polynomials such that g is not
a zero divisor and Rf + Rg = R. Suppose that there exists m ∈ R with Rm =
Rf ∩ Rg. Let f ′, g′ ∈ R be such that m = f ′g = g′f . Let also T be any pseudo-
linear transformation. We have:
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a) R/Rf ′ ∼= R/Rf .

b) g(T )(ker f(T )) = ker f ′(T ).

c) ker(m(T )) = ker f(T )⊕ ker g(T ).

Proof. a) The morphism φ : R/Rf ′ −→ R/Rf of left R-modules defined by
φ(1 +Rf ′) = g +Rf is in fact an isomorphism.

b) Since f ′g = g′f , we have (f ′g)(T )(ker f(T )) = 0. Hence g(T )(ker f(T )) ⊆
ker f ′(T ). Let φ be the map defined in the proof of a) above and let h ∈ R
be such that φ−1(1 + Rf) = h + Rf ′. Since φ−1 is well defined, we have
fh ∈ Rf ′ and h(T )(ker f ′(T ) ⊆ ker f(T ). We also have gh − 1 ∈ Rf ′ and
so (gh)(T )|ker f ′(T ) = id.|ker f ′(T ). This gives ker f ′(T ) = gh(T )(ker f ′(T )) ⊆
g(T )(ker f(T )) ⊆ ker f ′(T ). This yields the desired conclusion.

c) Obviously ker g(T ) + ker f(T ) ⊆ ker(m(T )). Now let v ∈ kerm(T ). Then
f ′g(T )(v) = 0 = g′f(T )(v). This gives g(T )(v) ∈ ker f ′(T ) and so, using the
equality b) above, we have g(T )(v) ∈ g(T )(ker f(T )). This shows that there
exists w ∈ ker f(T ) such that g(T )(v) = g(T )(w). We conclude v − w ∈ ker g(T )
and v ∈ ker g(T ) + ker f(T ). The fact that the sum is direct is clear from the
equality R = Rf +Rg.

As an application of the preceding proposition, we have a relation between
the roots of two similar polynomials with coefficients in a division ring. For
f ∈ K[t;σ, δ], where K is a division ring, we denote V (f) the set of right roots
of f . For x /∈ V (f) we put ϕf (x) := xf(x) := σ(f(x))xf(x)−1 + δ(f(x))f(x)−1.
With these notations we have the following corollary of the previous proposition:

Corollary 2.19. Let f, f ′ ∈ K[t; σ, δ] be such that φ : R/Rf ′ −→ R/Rf is an
isomorphism defined by φ(1 +Rf ′) = g +Rf . Then V (f ′) = ϕg(V (f)).

Proof. SinceRf+Rg = R, g(x) ̸= 0 for any x ∈ V (f) and we have: f ′(ϕg(x))g(x) =
(f ′g)(x) = (g′f)(x) = 0. This shows that ϕg(V (f)) ⊆ V (f ′). For the reverse in-
clusion let us remark that y ∈ V (f ′) implies that 1 ∈ ker f ′(Ty) the assertion
b) in the above proposition 2.18 shows that there exists z ∈ ker f(Ty) such that
1 = g(Ty)(z) = g(yz)z. An easy computation then gives that y = ϕg(y

z). Since
f(Ty)(z) = 0 implies f(yz) = 0, we conclude that V (f ′) ⊆ ϕg(V (f)), as re-
quired.
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3 Applications

Statement 1 of the following theorem is more general and statement 2 is more
precise than the classical Gordon-Motzkin result (which is statement 1 of Theorem
3.1 with (σ, δ) = (id., 0) ). We will state it in the language of the maps Ta
introduced in Section 2 (an even stronger statement was given in [LO]). For an
element a in a division ringK, we recall that Cσ,δ(a) := {0 ̸= x ∈ K | ax = a}∪{0}
(Cf. Section 1) and ∆σ,δ(a) := {x ∈ K \ {0} | σ(x)a + δ(x) = ax}. Cσ,δ(a) is a
subdivision ring of K and for any f(t) ∈ R = K[t;σ, δ], f(Ta) is a right Cσ,δ(a)-
linear map (Cf. Corollary 2.15(d)). The set ∆(a) = ∆σ,δ(a) is the (σ, δ)-conjugacy
class determined by a.

Theorem 3.1. Let f(t) ∈ R = K[t;σ, δ] be a polynomial of degree n. Then:

1) f(t) has roots in at most n (σ, δ)-conjugacy classes, say {∆(a1), . . . ,∆(ar)},
r ≤ n;

2)
∑r

i=1 dimC(ai) ker(f(Tai)) ≤ n, where C(ai) := Cσ,δ(ai) for 1 ≤ i ≤ r.

Proof. We refer the reader to [LLO] and [LO].

Remark 3.2. In [LLO] it is shown that equality in formula 2) holds if and only
if the polynomial f(t) is Wedderburn.

We now offer an application of the previous Theorem 3.1.
In coding theory some authors have used Ore extensions to define noncommu-

tative codes (Cf. [BGU], [BU]). In particular, noting Fq the finite field of char-
acteristic p with q = pn elements, they considered the Ore extension of the form
R := Fq[t; θ], where θ is the usual Frobenius automorphism given by θ(x) = xp.
The following theorem shows that the analogue of the usual minimal polynomial
Xq −X ∈ Fq[X] annihilating Fq is of much lower degree in this noncommutative
setting.

Theorem 3.3. Let p be a prime number and Fq be the finite field with q = pn

elements. Denote by θ the Frobenius automorphism. Then

a) There are p distinct θ-conjugacy classes in Fq.

b) For 0 ̸= a ∈ Fq we have Cθ(a) = Fp and Cθ(0) = Fq.

c) In R = Fq[t; θ], the least left common multiple of all the elements of the form
t − a for a ∈ Fq is the polynomial G(t) := t(p−1)n+1 − t. In other words,
G(t) ∈ Fq[t; θ] is of minimal degree such that G(a) = 0 for all a ∈ Fq.

d) The polynomial G(t) obtained in c). above is invariant, i.e. RG(t) = G(t)R.
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Proof. a) Let us denote by g a generator of the cyclic group F∗
q := Fq \ {0}. The

conjugacy class determined by the zero element is reduced to {0} i.e. ∆(0) = {0}.
The conjugacy class determined by 1 is a subgroup of F∗

q: ∆(1) = {θ(x)x−1 | 0 ̸=
x ∈ Fq} = {xp−1 | 0 ̸= x ∈ Fq}. It is easy to check that ∆(1) is cyclic generated
by gp−1 and has order given by pn−1

p−1
. Its index (F∗

q : ∆(1)) = p − 1. Since two

nonzero elements a, b are θ-conjugate if and only if ab−1 ∈ ∆(1), we indeed get
that the number of different nonzero conjugacy classes is p − 1. This yields the
result.
b) If a ∈ Fq is nonzero, then Cθ(a) = {x ∈ Fq | θ(x)a = ax} i.e. Cθ(a) = Fp.
c) We have, for any x ∈ Fq, (t

(p−1)n+1−t)(x) = θ(p−1)n(x) . . . θ(x)x−x. Since θn =
id., we get (t(p−1)n+1 − t)(x) = x(θn−1(x) . . . θ(x)x)p−1 − x = xNn(x)

p−1 − x = 0,
since Nn(x) ∈ Fp. This shows that indeed G(t) annihilates all the elements of Fq

and hence G(t) is a left common multiple of the linear polynomials {(t− a) | a ∈
Fq}. Let us put h(t) := [t− a | a ∈ Fq]l. It remains to show that deg h(t) ≥ n(p−
1) + 1. Let 0 = a0, a1, . . . , ap−1 be elements representing the θ-conjugacy classes
(Cf. a) above). Denote C0, C1, . . . , Cp−1 their respective θ-centralizer. Theorem
2.12 7) shows that h(Ta)(x) = h(ax)x = 0 for any nonzero element x ∈ K. Hence
kerh(Ta) = Fq. Using the inequality 2) in Theorem 3.1 and the statement b)
above, we get deg h(t) ≥

∑p−1
i=0 dimCi

kerh(Tai) = dimFqFq +
∑p−1

i=1 dimFpFq =
1 + (p− 1)n, as required.
d) Since θn = id., we have immediately that G(t)x = θ(x)G(t) and obviously
G(t)t = tG(t).

Remark 3.4. The polynomial G(t) = tn(p−1)+1 − t ∈ Fpn [t; θ] defined in the
previous theorem 3.3 can have roots in an extension Fpl ! Fpn . This is indeed
always the case if l = n(p − 1). Let us denote ∆l(1) := {1x | 0 ̸= x ∈ Fpl} and
∆n(1) := {1x | 0 ̸= x ∈ Fpn}. Since θl = id. on Fpl , we have G(t)a = θ(a)G(t)
for any a ∈ Fpl . This gives, for any 0 ̸= x ∈ Fpl , G(1

x)x = (G(t)x)(1) =
(θ(x)G(t))(1) = θ(x)G(1) = 0. In other words, G(t) annihilates the θ-conjugacy

class ∆l(1) ⊆ Fpl . It is easy to check that |∆l(1)| = pl−1
p−1

> pn−1
p−1

= |∆n(1)|. We

conclude that G(t) has roots in Fpl \ Fpn . This contrasts with the classical case
where :[x− a | a ∈ Fpn ]l = xp

n − x ∈ Fpn [x] has all its roots in Fpn .

We continue our investigations of finite fields and the Frobenius automorphism
and come back to the comments made in the paragraph just after the last example
in 2.2. For a prime p and an integer i ≥ 1, we define [i] := pi−1

p−1
= pi−1 + pi−2 +

· · · + 1 and put [0] = 0. We fix an integer n ≥ 1 and continue to denote q = pn.
Let us introduce the following subset of Fq[x]:

Fq[x
[]] := {

∑
i≥0

αix
[i] ∈ Fq[x]}

A polynomial belonging to this set will be called a [p]-polynomial. We extend
θ to the ring Fq[x] and put θ(x) = xp i.e. θ(g) = gp for all g ∈ Fq[x]. We
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thus have R := Fq[t; θ] ⊂ S := Fq[x][t; θ]. Considering f ∈ R := Fq[t; θ] as an
element of Fq[x][t; θ] we can evaluate f at x. We denote the resulting polynomial
by f [] ∈ Fq[x] i.e. f(t)(x) = f [](x).

The last statement of the following theorem will show that the question of
the irreducibility of a polynomial f(t) ∈ R := Fq[t; θ] can be translated in terms
of irreducibility in Fq[x

[]]. This makes Berlekamp algorithm available to test
irreducibility of polynomials in R = Fq[t; θ]. This will also provide an algorithm
for factoring polynomials in Fq[t; θ], as explained in the paragraph following the
proof of the next theorem.

Theorem 3.5. Let f(t) =
∑n

i=0 ait
i be a polynomial in R := Fq[t; θ] ⊂ S :=

Fq[x][t; θ]. With the above notations we have:

1) For any b ∈ Fq, f(b) =
∑n

i=0 aib
[i].

2) f [](x) =
∑n

i=0 aix
[i] ∈ Fq[x

[]].

3) {f []|f ∈ R = Fq[t; θ]} = Fq[x
[]].

4) For i ≥ 0 and h(x) ∈ Fq[x] we have T i
x(h) = hp

i
x[i].

5) For g(t) ∈ S = Fq[x][t; θ] and h(x) ∈ Fq[x] we have g(Tx)(h(x)) ∈ Fq[x]h(x).

6) For any h(t) ∈ R = Fq[t; θ], f(t) ∈ Rh(t) if and only if f [](x) ∈ Fq[x]h
[](x).

Proof. 1) This has been noted earlier (Cf. the last example in 2.2).
2) We compute: f(t)(x) = (

∑n
i=0 ait

i)(x) =
∑n

i=0 aiNi(x). Since, for i > 0,
Ni(x) = θi−1(x) · · · θ(x)x = x[i] and N0(x) = 1 = x[0], we do get the desired
result.
3) This is clear from the statement 2) above.
4) This is easily proved by induction (notice that T 0

x (h) = h = hp
0
x[0]).

5) Let us put g(t) =
∑n

i=0 gi(x)t
i. Statement 4) above then gives: g(Tx)(h(x)) =

(
∑n

i=0 gi(x)T
i
x)(h(x)) =

∑n
i=0 gi(x)h

pix[i] ∈ Fq[x]h.
6) Let us write f(t) = g(t)h(t) in R. The generalized product formula and the
statement 5) above gives f [](x) = f(t)(x) = (g(t)h(t))(x) = g(Tx)(h(t)(x)) =
g(Tx)(h

[](x)) ∈ Fq[x]h
[](x).

Conversely, suppose there exists g(x) ∈ Fq[x] such that f [](x) = g(x)h[](x). Let
f(t), h(t) ∈ Fq[t; θ] be such that f(t)(x) = f [](x) and h(t)(x) = h[](x). Using
the euclidean division algorithm in Fq[t; θ] we can write f(t) = q(t)h(t) + r(t)
with deg r(t) < deg h(t). Evaluating both sides of this equation at x we get,
thanks to the generalized product formula, f [](x) = f(t)(x) = q(Tx)(h(t)(x)) +
r(t)(x) = q(Tx)(h

[](x))+r[](x) and deg r[](x) = [deg r(t)] < [deg h(t)] = deg h[](x).
Statement 5) above and the hypothesis then give that r[](x) = 0. Let us write
r(t) =

∑l
i=0 rit

i ∈ Fq[t; θ]. With these notations we must have
∑l

i=0 rix
[i] = 0.

This yields that for all i ≥ 0, ri = 0 and hence r(t) = 0, as required.
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Let us mention the following obvious but important corollary:

Corollary 3.6. A polynomial f(t) ∈ Fq[t; θ] is irreducible if and only if its at-
tached [p]-polynomial f [] has no non trivial factor in Fq[x

[]].

Of course, the condition stated in the above corollary 3.6 can be checked
using, for instance, the Berlekamp algorithm for factoring polynomials over finite
fields. In fact this leads easily to an algorithm for factoring f(t) ∈ Fq[t; θ]. Indeed
given f(t) ∈ Fq[t; θ] we first find a polynomial h[] ∈ Fq[x

[]] such that h[] divides
f [] (if possible) and we write f [] = g(x)h[] for some g(x) in Fq[x]. This gives
f(t) = g′(t)h(t) ∈ Fq[t; θ]. We then apply the same procedure to g′(t) and find a
right factor of g′(t) in Fq[t; θ] by first finding (if possible) a [p]-factor of g′[]... The
above correspondence between polynomials in Fq[t; θ] and [p]-polynomials will be
further studied and generalized in a forthcoming paper. For the moment let us
give some concrete examples.

Examples 3.7. In the next three examples we will consider the field of four
elements F4 = {0, 1, a, 1+ a} where a2+ a+1 = 0. θ(a) = a2 = a+1; θ(a+1) =
(a+ 1)2 = a.

a) Consider the polynomial t3 + a ∈ F4[t; θ]. Its associated [2]-polynomial is
given by x7+ a ∈ F4[x]. Since a is a root of x7+ a it is also a root of t3+ a.
This gives t3 + a = (t2 + at+ 1)(t+ a) in F4[t; θ]. Now, the [2]-polynomial
associated to the left factor t2 + at + 1 is x3 + ax + 1 ∈ F4[x]. Since this
last polynomial is actually irreducible we conclude that t2 + at + 1 is also
irreducible in F4[t; θ]. Hence the factorization of t3 + a given above is in
fact a decomposition into irreducible factorizations.

b) Let us now consider f(t) = t4 + (a+1)t3 + a2t2 + (1+ a)t+1 ∈ F4[t; θ]. Its
attached [p]-polynomial is x15+(a+1)x7+(a+1)x3+(1+ a)x+1 ∈ F4[x].
We can factor it as follows:

(x12+ax10+x9+(a+1)x8+(a+1)x5+(a+1)x4+x3+ax2+x+1)(x3+ax+1)

This last factor is a [p]-polynomial which corresponds to t2+at+1 ∈ F4[t; θ].
Moreover since x3 + ax + 1 is actually irreducible in F4[x], we have that
t2 + at + 1 is also irreducible in F4[t; θ]. We then easily conclude that
f(t) = (t2 + t + 1)(t2 + at + 1) is a decomposition of f(t) into irreducible
factors in F4[t; θ].

c) Let us consider the polynomial f(t) = t5 + at4 + (1 + a)t3 + at2 + t + 1.
Its attached [p]-polynomial is x31 + ax15 + (1 + a)x7 + ax3 + x + 1. It is
easy to remark that a is a root and we get f(t) = q1(t)(t + a) in F4[t; θ]
where q1(t) = t4 + (a+ 1)(t2 + t+ 1). The [p]-polynomial attached to q1(t)
is x15 + (a + 1)(x3 + x + 1). Again we get that a is a root and we obtain
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that q1(t) = (q2(t))(t + a) in F4[t; θ] where q2(t) = t3 + (a + 1)t2 + at + a.
The [p]-polynomial attached to q2(t) is x

7 + (a+1)x3 + ax+ a. Once again
a is a root and we have q2(t) = (t2 + t+ 1)(t+ a). Since t2 + t+ 1 is easily
seen to be irreducible in F4[t; θ], we have the following factorization of our
original polynomial: f(t) = (t2 + t+ 1)(t+ a)3. We can also factorize f(t)
as follows: f(t) = (t+ a+ 1)(t+ 1)(t+ a)(t2 + (a+ 1)t+ 1).

Remark 3.8. It is a natural question to try to find a good notion of a splitting
field attached to a polynomial of an Ore extension. The above results justify that,
in the case of a skew polynomial ring Fq[t; θ] where q = pn and θ is the Frobenius
automorphism, we define the splitting field of a polynomial f(t) ∈ Fq[t; θ] to be
the splitting of the polynomial f [](x) over Fq.

Our next application of Theorem 3.1, is an easy proof of Hilbert 90 theorem.
(Cf. [LL3]) for more advanced results using also structure theory of an Ore
extension K[t; σ, δ].

Proposition 3.9. a) Let K be a division ring, σ an automorphism of K of
finite order n and such that no power of σ of order strictly smaller than
n is inner. Then ∆σ(1) is algebraic and tn − 1 ∈ K[t;σ] is its minimal
polynomial (i.e. V (tn − 1) = ∆(1)).

b) Let K be a division ring of characteristic p and δ a nilpotent derivation of
K of order pn satisfying no identity of smaller degree than pn. Then ∆δ(0)
is algebraic and tp

n
is its minimal polynomial (V (tp

n
) = ∆δ(0)).

Proof. a) Since T n
1 = σn = id., we have ker(T n

1 − id.) = K. It is easy to check
that (tn−1)(σ(x)x−1) = 0 for any x ∈ K \{0}. We thus have ∆σ(1) ⊆ V (tn−1).
Standard Galois theory of division rings implies that [K : Fix(σ)]r = n. Moreover
Cσ(1) = Fix(σ), part two of Theorem 3.1 than quickly yields the result.
b) This is similar to the above proof noting that K = ker(δp

n
) = ker(T pn

0 ),
Cδ(0) = ker(δ) and [K : ker(δ)]r = pn.

Remark 3.10. We do get back the standard Hilbert 90 theorem remarking in
particular that ∆σ(1) = {σ(x)x−1 | x ∈ K \ {0}}.

As another application, let us now give a quick proof of a generalized version of
the Frobenius formula in characteristic p > 0. The proof of this formula is usually
given for a field through long computations involving additive commutators (Cf.
Jacobson [Ja2], p. 190). Using the polynomial maps we give a quick proof.

Proposition 3.11. Let K be a ring of characteristic p > 0, δ be a (usual)
derivation of K and a any element in K. In R = K[t; id., δ] we have

(t− a)p = tp −Np(a).
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Proof. Define d a derivation on R by d|K = 0 and d(t) = 1. It is easy to check
that this gives rise to a well defined derivation of R. Notice that d(t − a) = 1
commutes with t − a hence d((t − a)p) = 0. Let us write (t − a)p =

∑p
i=0 cit

i.
Applying d on both sides we quickly get that ci = 0 for all i = 1, . . . , p − 1.
We thus have (t − a)p = tp − c0. Since a is a right root we have indeed that
c0 = Np(a).

Let us now analyze the maps arising in a division process. The so called Ni

maps of section 1 have been largely studied in previous works (e.g. [LL1],[LL2]).
Here we will look at the quotient and get some formulas generalizing elementary
ones. It doesn’t seem that these maps have been introduced earlier in this setting.

Proposition 3.12. Let A, σ, δ be a ring, an endomorphism and a σ-derivation of
A. For a ∈ A and i ≥ 0, let us write ti = qi,a(t)(t− a) +Ni(a) in R = A[t; σ, δ].
We have:

1) If f(t) =
∑n

i=0 ait
i ∈ R, then f(t) =

∑n
i=0 aiqi,a(t)(t− a) +

∑n
i=0 aiNi(a).

2) q0,a = 0, q1,a = 1 and, for i ≥ 1, qi+1,a(t) = tqi,a(t) + σ(Ni(a)).

3) Ni(b)−Ni(a) = qi,a(Tb)(b− a) = qi,b(Ta)(b− a).

Proof. The elementary proofs are left to the reader.

Remark 3.13. Even the case when σ = id. and δ = 0 is somewhat interesting. In
this latter case the polynomials qi,a can be expressed easily: qi,a(t) = ti−1+ati−1+
· · ·+ai−1. Of course, in this case we get some familiar formulas. For instance the
last equation in 3.12 above gives the classical equality in a noncommutative ring
A: bi − ai = (b− a)bi−1 + a(b− a)bi−2 + · · ·+ ai−1(b− a).

We now present the last application which is slightly related to the case when
the base ring is left duo.

Definition 3.14. We will say that two monic polynomials f, g ∈ R = A[t;σ, δ]
have a monic left common multiple if there exists monic polynomials f ′, g′ ∈ R
such that f ′g = g′f .

We will use the notations from Theorem 2.12.

Proposition 3.15. Two monic polynomial f, g have a monic left common multi-
ple if and only if there exists a monic polynomial g′ ∈ R such that (1, 0, . . . , 0) ∈
ker g′f(Tg). In particular, if g = t − a then there exists a monic left common
multiple of f, g if and only if there exists c ∈ A such that Ta(f(a)) = cf(a).

The easy proof is left to the reader. We now look at the same problem from
a slightly different perspective (a ”down-up” approach, comparing to the ”top
down” mentioned above)
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Proposition 3.16. Let A, σ, δ be respectively, a ring, an endomorphism of A and
a σ-derivation of A. The following are equivalent:

(i) For a, b ∈ A, there exist c, d ∈ A such that (t− c)(t− a) = (t− d)(t− b) in
R = A[t; σ, δ].

(ii) For any a, b ∈ A, there exists c ∈ A such that Tb(a) = ca = Lc(a)

(iii) For any a, b ∈ A, there exists c ∈ A such that σ(a)b+ δ(a) = ca.

In particular, when σ = id. and δ = 0, the above conditions are also equivalent
to the ring A being left duo.

Proof. (i) ⇒ (ii). Clearly (i) implies that b is a (right) root of (t − c)(t − a).
Hence for every a, b ∈ A there exists c ∈ A such that (Tb − c)(b − a) = 0. Since
a, b are any elements of A this implies (ii)).
(ii) ⇒ (iii). This is easily obtained using the definition of Tb.
(iii) ⇒ (i). Let a, b ∈ A. Writing the condition (iii) for the elements b − a and
b we find an element c ∈ A such that σ(b − a)b + δ(b − a) = c(b − a). We then
check that ((t− c)(t− a))(b) = 0. This shows that (t− c)(t− a) is right divisible
by t− b and this proves statement (i).
The additional statement is clear from (iii) indeed in this case (iii) means that
for any a, b ∈ A, ab ∈ Aa. Or in other words, that any left principal ideal Aa is
in fact two sided.

The last statement of the previous proposition 3.16 justifies the following
definition:

Definition 3.17. A ring A is left (σ, δ)-duo if for any a, b ∈ A, there exists c ∈ A
such that Tb(a) = ca.

Proposition 3.16 was already given in the last section of [DL]. Here we stress
the use of Ta. In fact the pseudo-linear map Ta enables us to show that in an Ore
extension built on a left (σ, δ)-duo ring, the least left common multiple exists for
any two monic polynomials as long as one of them can be factorized linearly. We
state this more precisely in the following theorem. This theorem was also proved
by M. Christofeul with a different, more computational, proof [C].

Theorem 3.18. Let a1, . . . , an be elements in a left (σ, δ)-duo ring A. Then for
any monic polynomial g(t) ∈ R = A[t;σ, δ] there exists a monic least left common
multiple of g(t) and of (t− an) · · · (t− a1) of degree ≤ n+ deg(g).

Proof. We proceed by induction on n. If n = 1 the fact that A is (σ, δ)-left duo
implies that there exists c ∈ A such that Ta1(g(a1)) = cg(a1) and this shows that
the polynomial (t− c)g(t) is divisible on the right by t− a1, as desired.
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Assume n > 1. By the above paragraph, there exist a monic polynomial g1(t) ∈ R
and an element c ∈ A such that g1(t)(t−a1) = (t−c)g(t). On the other hand, the
induction hypothesis shows that there exist monic polynomials h(t), p(t) ∈ R such
that h(t)(t− an) · · · (t− a2) = p(t)g1(t) where deg(h)+n− 1 ≤ deg(g1)+n− 1 =
deg(g)+n−1. This implies that h(t)(t−an) · · · (t−a2)(t−a1) = p(t)g1(t)(t−a1) =
p(t)(t− c)g(t). This shows that g(t) and (t− a1)(t− a2) · · · (t− an) have a monic
common multiple of degree ≤ deg(g) + n.
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